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Abstract

Since calcium-signaling regulates specific and fundamental cellular processes, it represents the ideal target of viral proteins, in order for the
virus to control cellular functions and favour its persistence, multiplication and spread. A detailed analysis of reports focused on the impact of viral
proteins on calcium-signaling has shown that virus-related elevations of cytosolic calcium levels allow increased viral protein expression (HIV-1,
HSV-1/2), viral replication (HBx, enterovirus 2B, HTLV-1 p12, HHV-8, EBV), viral maturation (rotavirus), viral release (enterovirus 2B) and cell
immortalization (EBV). Interestingly, virus-induced decreased cytosolic calcium levels have been found to be associated with inhibition of
immune cells functions (HIV-1 Tat, HHV-8 K15, EBV LMP2A). Finally, several viral proteins are able to modulate intracellular calcium-signaling
to control cell viability (HIV-1 Tat, HTLV-1 p13™, HCV core, HBx, enterovirus 2B, HHV-8 K7). These data point out calcium-signaling as a key

cellular target for viral infection and should stimulate further studies exploring new calcium-related therapeutic strategies.

© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

It is well known that viruses need the cell machinery for
their multiplication and survival. Since calcium-signaling is a
common regulatory system able to control fundamental cellular

Abbreviations: aa, amino acids; [Ca” Jeyts Cytosolic calcium-concentration;

[Ca2+]e,, endoplasmic reticulum calcium-concentration; [Ca2+]Gnlgi, Golgi
apparatus calcium-concentration; [Ca2+],m, mitochondrial calcium-concentra-
tion; Ca®", calcium; EBV, Epstein—Barr virus; ER, endoplasmic reticulum;
HBYV, hepatitis B virus; HCV, hepatitis C virus; HHV-8, human herpesvirus
type-8; HIV-1, human immunodeficiency virus type-1; HPV, human papillo-
mavirus; HSV-1/2, herpes simplex virus type-1 and type-2; HTLV-1, human T
lymphotropic virus type-1; IP;, inositol 1,4,5-triphosphate; IPsR, inositol
triphosphate receptor; kb, kilobase; kDa, kilodalton; NCX/HCX, Na“/Ca*"
exchanger and H/Ca®" exchanger; NFAT, nuclear factor of activated T cell;
PMCA, plasma membrane Ca>"-ATPase; SERCA, sarco-Endoplasmic reticulum
Ca>"-ATPase; ROC, receptor operated channel; RYR, ryanodine receptor;
SERCA, sarco-Endoplasmic reticulum Ca®"-ATPase; SOC, store operated
channel; SPCA, secretory pathway Ca’"-ATPase; TRPC, members of the
transient receptor potential ion-channel family
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processes, it is not surprising that several viruses encode proteins
which modify calcium-signaling allowing them to highjack
cellular functions to serve one or several steps of infection.

During the last decades, new methods to explore intracellular
calcium-signaling have brought a revolution in our under-
standing of the rules of the intracellular calcium “cosmos” and
provided the tools to better understand how viruses and cells
interact and how this interaction may generate diseases.

This review, which is not meant to be exhaustive, is
focused on calcium-signaling and/or calcium-dependent path-
ways alterations related to the intracellular presence of human
viruses or their viral proteins. Its aim is to point out the
calcium-dependent mechanisms of viral infection and stimu-
late further studies applying modern calcium-signaling
approaches to gain new insight on viral strategies to drive
cellular processes.

It has been observed that “almost everything we do is
controlled by Ca®" [1]. At the intracellular level, this control is
mediated by elevations in the concentration of intracellular free
Ca** ([Ca2+]cyt) [1,2] which are known to regulate a wide
variety of elementary cellular processes, such as signal
transduction pathways and gene expression, and of global
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cellular processes including fertilisation, contraction, secretion,
learning and memory, cell growth and apoptosis [3—5]. To
control these processes, Ca>" spikes and waves have evolved to
be highly versatile not only in terms of amplitude, frequency
and spatio-temporal patterning [1] but also in terms of shape,
number, direction, velocity and route [2], achieving differential
modulation of Ca*'-binding proteins and Ca”*-dependent
effectors [6]. Ca®'-signals can be spatially restricted into
nano- and microdomains, such as those located beneath the
plasma membrane and those located between ER and
mitochondria [7]. Recent findings had highlighted the primor-
dial role of calcium cross-talk between the ER and the
mitochondria in the fine regulation of intracellular calcium-
signaling [7]. Key cellular calcium-handling proteins allow to
finely regulate intracellular, including intra-organelles calcium-
signaling (Fig. 1).

The ability to record changes in the free Ca**-concentration
in living cells is fundamental to study Ca”’-signaling.
Fluorescent Ca®" indicators such as quin-2 and Fura2-AM
enabled the first quantitative measurements of the changes in
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the free Ca’'-concentration occurring inside cells. Today,
dozens of different chemical probes have been generated
using this strategy (reviewed in [8]). Even if fluorescent dyes
have a number of advantages over genetically encoded
indicators (they are cheap, easy to use, have a high dynamic
range, and are easy to calibrate), they cannot be selectively
targeted to specific cellular organelles or compartments. An
alternative approach to the use of fluorescent dyes was
introduced in 1992 by the development of recombinant targeted
aequorin calcium probes, allowing selective measurements of
[Ca®"] changes in virtually all intracellular compartments of the
transfected or transduced cells [9]. The mechanism of these
luminescent probes is distinct from that of the fluorescent Ca”*
dyes. The conversion of measured luminescence to [Ca®]
values is based on the rate of consumption of the probe, rather
than on the binding equilibrium between the probe and Ca*" as
in the case of fluorescent probes [9].

This review reports about calcium-signaling alterations
related to the intracellular presence of complete virions or
viral proteins. In addition to calcium dyes and probes (direct
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Fig. 1. Schematic representation of intracellular calcium-signaling. In the resting cell, free [Ca® eyt is kept very low (100 nM) primarily by active Ca>* transporters that
either extrude Ca”" across the plasma membrane (PM) to the extracellular environment (PMCA and Na'/Ca®" exchanger (NCX)) or uptake Ca®" into intracellular
organelles (mainly SERCA) [5]. Free extracellular Ca®'-concentration is around 1-2 mM [5]. Cytosolic Ca>* elevations are due to the entry of extracellular Ca*" via
Ca®" channels in the plasma membrane (VOC, ROC, TRPC and SOC) or the release of stored Ca>* through ER Ca*" channels (inositol-1,4,5-trisphosphate receptors
(IP*R) and ryanodine receptors (RyR). Calcium release through IP*R occurs upon stimulation of plasma membrane receptors, the receptors coupled to G proteins
(RCGP) and the tyrosine kinase receptors (TKR), and subsequent synthesis of IP* by PLC [3—5]. In addition to ER Ca”" store, other intracellular Ca®"-pools are
implicated in the control of intracellular calcium-signaling such as Golgi apparatus, lysosomes, endosomes and secretory granules. Mitochondria accumulate calcium via
the uniporter (UP) following physiological stimulation [210]. This accumulation depends on the high calcium-concentration which occurs close to the plasma membrane
and ER calcium-channels (microdomains) [161]. Mitochondrial calcium extrusion is achieved by the Na*/Ca®" exchanger and H'/Ca®* exchanger (NCX/HCX).
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Fig. 2. Cellular targets of “calcium” drugs. Inhibitory drugs are shown in red and activating drugs are shown in green. Intracellular [Ca®"] chelation is obtained by
using BAPTA-AM (1,2-Bis (2-aminophenoxy)ethane-N,N,N’, N'-tetraacetic acid tetrakisacetoxymethyl ester) or EGTA-AM (Ethylene-bis (oxyethylenenitrilo)
tetraacetic acid Glycol ether diamine tetraacetic acid-acetoxymethyl ester). Increase of intracellular [Ca®"] is obtained by using different ionophores: ionomycine,
valinomycin and A23187. EGTA chelates extracellular Ca®" ([Ca®"],) thus reducing Ca®" entry. Inhibition of Ca®" entry is also obtained through inhibition of Ca®"
channels: Nifedipine and Verapamil inhibit L-type Ca®" channels, SKF 96365 is a selective inhibitor of receptor-mediated Ca®" entry (ROC) and voltage-gated Ca**
entry (VOC). Econazole blocks all Ca®" channels. Activation of Ca®>" entry is obtained by Ca®" channel agonist BayK8644. TG: thapsigargin, CPA: cyclopiazonic
acid, TBUBHQ and curcumin inhibit SERCA pump activity thus discharging ER Ca*-pool. Inhibition of ER Ca®'-release is obtained by blocking IP* receptor (IP°R)
by 2-APB and xestospongin or Ryanodin Receptor (RyR) by dantrolene. Inhibition of Ca*-release through IP°R is obtained by inhibition of IP*> production by
phospholipase C (PLC). Cyclosporin A (CsA) binds to cyclophilin D thus blocking the permeability transition pore (PTP) opening and mitochondrial Ca**-release.
Mitochondrial Ca®*-release is prevented by the Na'/Ca”" exchanger (NCX) inhibitor, CGP37157. Inhibition of mitochondrial uniporter (UP) by ruthenium red (RR)
blocks mitochondrial Ca**-accumulation. CsA binding to calcineurin blocks NFAT (Nuclear Factor of Activated T cells) dephosphorylation and activation. Calpeptin
blocks the calcium-dependent protease calpain.

measurements), “calcium” drugs, having different degrees of
specificity and inhibiting calcium handling and binding proteins
(indirect measurements), are used to identify mechanisms and/
or partners implicated in calcium dependent regulations of
cellular processes (Fig. 2). Tables 1 and 2 report results
according to the type of measurement used.

2. RNA viruses
2.1. Human immunodeficiency virus type-1
Human Immunodeficiency Virus (HIV) is a retrovirus

targeting mainly T CD4+ cells and is the causative agent of
Acquired Immuno-Deficiency Syndrome (AIDS). AIDS is the

most advanced stage of HIV infection, characterized by a
gradual depletion of CD4+, and thus a higher sensitivity to
opportunistic infections, and also associated with heart, nervous
system or kidney diseases. The worldwide development of HI'V-
related disease is alarming, with more than 36 million existing
infections, and about 20 million deaths [10]. The HIV-1 9.2 Kb
single-stranded RNA genome encodes nine open reading
frames, giving birth to structural proteins: Gag, Env and Pol
polyproteins proteolysed into MA (matrix), CA (capsid), NC
(nucleocapsid), p6, SU (surface, also known as gp120), TM
(transmembrane or gp41), PR (protease), RT (reverse transcrip-
tase), and IN (integrase). HIV-1 encodes also six additional or
accessory proteins: Vif, Vpr, Nef, Tat, Rev and Vpu. After HIV-1
infection of resting memory or naive CD4+ T cells, macrophages
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Table 1
Effect of viruses/viral proteins on intracellular calcium-signaling: measurements with calcium dyes and probes
Virus Protein Ca®"-signals Mechanisms Cytobiological effects ~ Model Method References
HIV-1 Viral particle /'[CaH]Cyt Z71P? pathway Signal transduction H9 [13]
Nef /‘[Ca“]cyt basal ~Ca®" influx T cell activation (NFAT) Jurkat T Fluo-3 + Fura-Red, [16]
aequorin
71Ca* |yt /Non-ER Ca*" stores CEM and Ca®" and [17]
differentiated HL60 Fura2-AM
\Ca®" influx differentiated HL60 Fura2-AM [18]
Tat /'[Caz+]Cyt 7 ER Ca’"-release (IP°PR) TNFa production macrophages Fura2-AM [37]
N[Ca™ oy L-type Ca>" channel Inhibition of NK/DC NK, DC Fura2-AM [38-40]
inhibition functions
/'[Ca2+]cyt, 7ER Ca®'-release, Apoptosis induction neurons, astrocytes, Fura2-AM, Indo-1, [45-49]
Z1Ca% e /Ca**-influx microglial cells Calcium-Orange,
Rhod-2
gpl20 /'[Caz+]Cyt 7Ca**-influx Apoptosis induction neurons, astrocytes Fura2-AM [51]
(L-type Ca?* channels)
7[Ca> oyt /ER Ca**-release (IP5R) HT-29-D4 Fura2-AM [54]
HTLV-1 p12' 7 [Ca2+]Cyt basal ~ER Ca’'-release (IP;R) T cell activation (NFAT) Jurkat T Fura2-AM [31,58,59,61]
#Ca*-influx Viral replication, [62]
Adhesion
p13II N[Ca e Mitochondrial Ca**-leak Apoptosis induction isolated Calcium Green SN [63]
mitochondria
HCV Core N[Ca**er ER stress, calreticulin, Apoptosis induction HuH7 erAEQ [77]
NSERCA2 activity
7 [Ca* ey, ER Ca**-leak T cell activation (NFAT) Jurkat T Fura2-AM [83]
7[Ca* e
Enterovirus Viral particle, 2B/ [Ca2+]cy‘ \ ER Ca’"-store, Viral release HeLa Fura2-AM [103]
7 Ca*'-influx
2B 7 [Ca2+]cyt, 7 Ca**-influx Apoptosis inhibition HeLa, CHO Aequorin probes,  [106]
N [Ca? Imt Fura2-AM
\ [Ca?'Jer, ER and Golgi
N [Ca**]Golgi  Ca**-leak (pore formation)
Rotavirus  Viral particle 7 [Ca2+]cy‘ L-type Ca®" Viral maturation MA-104, Fura2-AM, [116,119,120]
channel activation Caco-2, HT29 quin-2-AM
NSP4 7 [Ca®" et 7 ER Ca**-release (IP°R), HT29, SP, Fura2-AM [124-126]
7 Ca*'-influx HEK293
HBV HBx 7 [Ca2+]cy‘ PMCA inactivation, Apoptosis induction HepG2, HeLa Aequorin probes [139]
mitochondrial Ca?*-leak
7 [Ca2+]cy‘ Signal transduction CHL-X Fura2-AM [140]
HHV-8 K15 N [Caz+]cyl Blocks BCR Immunity BJAB Indo-1 [143]
down-regulation
K1 7 [Caz+]cy‘ Interactions with T cell activation (NFAT) BJAB, 293T Indo-1 [158]
SH2 proteins
v-MIP 1/II 7 [Ca®*ent 7 Ca*'-influx (CCR5/8)  Signal transduction BCBL-1, PMBC  Indo-1 [162,163]
K7 7 [Ca® et 7 ER Ca®"-release Apoptosis inhibition BJAB Indo-1 [159]
HSV-1/2 Viral particle 7 [CaH]cyl 7 ER Ca*"-release (IP°R)  Viral protein Vero, Caski Fura2-AM [166]
expression and transport
Signal transduction
EBV Viral particle 7 [Ca2+]cy‘ 7 Ca®™-influx Cellular transformation B cells, Ramos Quin-2 [173]
(L-type Ca®" channels)
LMP2A N [Caz+]Cyt Blocks BCR Immunity BJAB, PMBC Fluo-3 [176-178]
down-regulation
Influenza  Viral particle 7 [CaH]Cyt 7 ER Ca’"release (IP°R) Neurophysiological Neurons Fluo-4-AM [189]
A virus changes
7 [Ca®" et 7 ER Ca**-release (IP°R)  Neutrophil deactivation  Neutrophils Fura2-AM, [191]
45C az+

Abbreviations: [Ca2+]cy‘, cytosolic calcium-concentration; [Ca®'ler, endoplasmic reticulum calcium-concentration; [Ca2+]G01gi, Golgi apparatus calcium-
concentration; [Ca2+]mt, mitochondrial calcium-concentration; BCR, B cell receptor; Ca*", calcium; CCR5/8, chemokine receptor type-5 and type-8; DC, dendritic
cell; EBV, Epstein—Barr virus; ER, endoplasmic reticulum; HBV, hepatitis B virus; HCV, hepatitis C virus; HHV-8, human herpesvirus type-8; HIV-1, human
immunodeficiency virus type-1; HSV-1/2, herpes simplex virus type-1 and type-2; HTLV-1, human T lymphotropic virus type-1; IP;, inositol 1,4,5-triphosphate; IP3R,
inositol triphosphate receptor; NFAT, nuclear factor of activated T cells; NK, natural killer cell; PMCA, plasma membrane Ca”?"-ATPase; SERCA, sarco-Endoplasmic
reticulum Ca®"-ATPase; TNFa tumor necrosis factor a.



1348

M. Chami et al. / Biochimica et Biophysica Acta 1763 (2006) 1344—1362

Table 2
Calcium-dependent effects of viruses/viral proteins: assessment by calcium drugs
Virus Protein Drug Effects of viruses/viral proteins Model References
H1V-1 Viral particle Ionomycin, TG, TBUBHQ, CPA Viral protein expression ACH-2,J1.1 [14]
econazole Viral protein expression
Nef EGTA, SKF 96365, CsA, 2-APB NFAT activation Jurkat T [16]
Tat xestospongin, BAPTA-AM, U73122 TNFa production macrophages [37]
BayK 8644 1L-12 secretion NK, DC [38,39]
BAPTA-AM, RR, CsA Neuronal cell death Hippocampal neurons [46]
HTLV-1 pl2l BAPTA-AM, CsA NFAT activation Jurkat T [58,59]
BAPTA-AM, SKF 96365, calpeptin LFA-1 expression Jurkat T [60]
TG LFA-1 expression
HCV Core CsA, EGTA NFAT activation Jurkat T [85]
SERCAZ2 overexpression Mitochondrial depolarisation and apoptosis HuH7 [77]
NS5A EGTA-AM, RR NFkB and STAT3 activation HuH7 [94]
Enterovirus Viral particle, 2B Medium without Ca®" Viral replication HeLa [103]
Rotavirus ~ Viral particle TG, A23187 Viral maturation MA-104 [116,117]
BAPTA-AM, verapamil Viral maturation and cell oncosis MA-104, HT29 [119,121]
HBV HBx BAPTA-AM, CsA, EGTA Apoptosis HepG2, HelLa [139]
BAPTA-AM, CsA AP-1 transactivating activity CHL-X [140]
BAPTA-AM, EGTA FAK activity and viral replication NIH3T3, HepG2 [146]
BAPTA-AM, CsA, CGP37157, CPA, U73122 Pyk2 activation and viral replication HepG2 [141,142,144]
TG, valinomycin Pyk2 activation and viral replication HepG2 [141,144]
TG HBYV capsid formation HepG2 [143]
HHV-8 Viral particle Tonomycin, TG Viral reactivation BCBL-1 [153]
BAPTA-AM, CsA Viral reactivation BCBL-1, DMVEC
HSV-1/2 Viral particle BAPTA-AM, 2-APB Viral protein expression and transport Vero, Caski [166]
EGTA-AM, CGP37157, RR NF«kB activation J774A.1 [168]
Tonomycin Viral release and cell death A431 [169]
EBV Viral particle Verapamil Viral entry and B cells immortalization B cells, Ramos [173]
CsA, FK506 Viral reactivation Akata [179]
Curcumin Viral reactivation RajiDR-Luc [184]
Tonomycine Viral reactivation Akata [178]
HPV Viral particle CaCP? Cellular transformation keratinocytes [195]

Abbreviations: AP-1, activator protein-1; 2-APB, 2-Aminoethyl diphenyl borate; BAPTAAM, 1,2-Bis(2-aminophenoxy)ethane-N,N,N’, N'-tetraacetic acid tetrakis-
acetoxymethyl ester; Ca*", calcium; CaCl,, calcium chloride; CPA, cyclopiazonic acid; CsA, cyclosporin A; EBV, Epstein—Barr virus; EGTA(-AM), Ethylene-bis
(oxyethylenenitrilo) tetraacetic acid Glycol ether diamine tetraacetic acid (-acetoxymethyl ester); ER, endoplasmic reticulum; FAK, focal adhesion kinase; HBV,
hepatitis B virus; HCV, hepatitis C virus; HHV-8, human herpesvirus type-8; HIV-1, human immunodeficiency virus type-1; HPV, human papillomavirus; HSV-1/2,
herpes simplex virus type-1 and type-2; HTLV-1, human T lymphotropic virus type-1; IL-12, interleukine-12; NFxB, nuclear factor kB; Pyk2, proline-rich tyrosine
kinase 2; NFAT, nuclear factor of activated T cells; RR, ruthenium red; SERCA, sarco-Endoplasmic reticulum Ca®"-ATPase; STAT3, signal transducer and activator of
transcription 3; TBUBHQ, 2,5-di-(t-butyl)-1,4-benzohydroquinone; TG, thapsigargin; TNF«, tumor necrosis factor o.

or mononuclear cells, infected cells enter a non-productive latent
infection phase. The molecular mechanisms that determine
whether a virus is going to interrupt or continue its life cycle are
still unclear [11,12].

In the past, a chronic activation of inositol phosphate
pathway and a rise in intracellular free Ca”"-concentration have
been observed in HIV-infected H9 lymphoblastoid CD4+ cells
[13]. Papp et al. had also shown that HIV protein expression is
enhanced by drugs increasing [Ca2+]Cyt and blocked by drugs
decreasing [Ca%]Cyt in HIV-1 infected T lymphoblastoid cells.
This study indicates that viral-induced mobilization of Ca®"
from intracellular storage pools and through the CCE pathway
may represent a key component of HIV replication [14].

Four HIV-1 proteins have been shown to modify calcium-
signaling: Nef, Vpr, Tat and gp120.

HIV-1 Nef protein is a small cytoplasmic myristoylated
protein which plays an important role in the pathogenesis of
AIDS as demonstrated in vivo by Nef-expressing transgenic
mice which develop an AIDS-like syndrome [15]. Cell culture
studies have revealed that Nef induces enhancement of HIV

replication and particle infectivity, down regulation of cell
surface expression of CD4 and major histocompatibility
complex I (MHC I), and modulation of intracellular signaling.
Nef acts as an adaptor, which binds cellular protein kinases, like
Src, resulting in interference of normal cellular signaling
processes and enhanced HIV-1 infectivity.

Nef has been demonstrated to increase cytosolic calcium
basal levels (in Jurkat T cells [ 16]) and after ionomicin treatment
(in lymphoblastoid CEM cells [17] and promyelocytic HL60
differentiated cell lines [18]). However, the mechanism
potentially involved in this effect was shown to be different in
the different cellular models. In Jurkat T cells, extracellular
calcium influx was shown to be activated by Nef, while analysis
using “calcium” drugs did not show calcium release from any
intracellular calcium store despite evidence of Nef binding to
IP;R1 [16]. These data suggest that Nef/ IP;R1 interaction may
promote cytosolic Ca*"-increase via enhanced physical coupling
between IP°R and plasma membrane channels [19]. In Nef
transfected lymphoblastoid CEM cells, extracellular calcium
influx was not analysed. However, studies using **Ca*" showed
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higher increase of [Ca2+]Cyt in Nef cells treated with
ionomycin suggesting that Nef expression is associated with
a higher filling of non-ER calcium stores [17]. In promyelo-
cytic HL60 differentiated cell lines, studies using Fura2-AM
showed a decreased extracellular calcium influx associated
with an increase of non-ER calcium stores [18].

Overall, these studies provide direct evidence that Nef
expression induces a cytosolic Ca®" increase. This Nef-induced
increase in cytosolic Ca®" was shown to activate Nuclear Factor
of Activated T cells (NFAT) [16,20] (a transcription factor
responsive to low-amplitude [Caz+]Cyt oscillations [6]), which
activates HIV-1 transcription (by activation of HIV-1 LTR) and
viral replication [21].

Actually, gene expression profiling analyses have shown that
Nef triggers a nearly identical transcriptional program to that of
T Cell Receptor (TCR) activation in Jurkat T cells [22]. This
activation, which has been debated [23—-25], is known to be
calcium-dependent and characterized by NFAT induction and
IL-2 production [22]. It would support HIV replication which is
known to be favoured by T cell activation, which regulates both
pre and post-integration steps in HIV life cycle [26,27].

HIV-1 viral protein R (Vpr), a 14 kDa accessory protein,
which expression is associated with progressive infection, is
mainly localized to the nucleus and mitochondria and implicated
in various functions including nuclear translocation of HIV pre-
integration complex, cell cycle arrest and apoptosis [28].

Vpr has been shown to cooperate with the adenine nucleotide
translocator (ANT) (which forms with the voltage-dependent
anion channel (VDAC) the permeability transition pore (PTP))
and forms ion channels in lipid bilayers. In fact Vpr has been
shown to induce mitochondrial membrane permeabilization
presumably leading to Ca®*-leakage from mitochondria and
apoptosis [29,30].

Vpr was shown to interact with Ca®"-related proteins and be
involved in Ca*'-regulated processes. Indeed, Vpr directly
binds to and activates the transcriptional co-activators p300, a
Ca”"-responsive activator [31], and CREB-binding protein
(CBP) [32,33] cooperating with Nef in NFAT-directed T cell
activation. Since p300/CBP is in limited amount, its activation
by Vpr could favour viral activation [32—35].

The HIV-1 transactivator of transcription (Tat) is the most
important regulator of viral gene expression and replication. Tat
is a 72—86 aa protein, acting in the nucleus to activate HIV-1
LTR [11]. Tat is also actively released from HIV-1 infected cells
into the extracellular environment, and thus may exert many
biological effects on bystander cells. Accumulating evidences
suggest that Tat is, by this way, an important mediator of
neurotoxicity related to HIV-associated dementia (HAD) [36].
Tat-mediated Ca®" deregulations were reported in two different
cellular models: in immune cells (dendritic cells (DC), natural
killer cells (NK), macrophages and T cells), and in neuronal
cells. Primary macrophage cultured cells exposed to Tat show
an increase of [Ca2+]Cyt level in a dose-dependent manner, as
demonstrated by using Fura2-AM. Actually, the increase in
[Ca%]cyt was shown to originate from IP3-regulated pools, since
xestospongin, a specific inhibitor of IP;-dependent Ca®'-
release, almost abrogated release of Ca®" induced by Tat

application [37]. The increase of [Caz+]cyt has been shown to
induce the production of the pro inflammatory cytokine TNFa
[37].

On the contrary, in primary NK cells and DC, Tat application
inhibits cytosolic Ca®"-signal following physiological stimula-
tion (cross-linking of CD11a or CD16 and apoptotic body-DC
interaction) thus blocking IL-12 secretion by DC [38] and
cytolytic activity in NK cells [39]. Tat has been shown to act by
blocking L-type Ca”*' channels (without affecting calcium
stores), as shown by using the calcium channel agonist Bay K
8644 [38,39]. Inhibition of calcium entry by Tat has been shown
to inhibit NK cells activation by DC [40]. This activation is
known to be dependent on interferon gamma via Calmodulin
kinase II (CAMKII) activation by extracellular Ca®" entry,
which can be blocked by Tat [40].

In Jurkat T cells, Tat has been proved to mediate
transcriptional events in HIV-infected cells, by interacting
with the Ca®"-sensitive p300 cofactor, thus enhancing Tat-
dependent HIV-1 gene expression [31,34]. Other studies have
reported that Tat affects several Ca”>' mediated events in
immune cells, including T cell activation, apoptosis and cell
proliferation [41—44].

Tat application on cultured human fetal neurons, microglial
cells and astrocytes increases intracellular calcium level in a
dose-dependent manner, as demonstrated by Fura2-AM, Indo-1
or Calcium-Orange experiments [45-49]. Calcium responses
to Tat were characterized by an initial transient increase and a
prolonged secondary increase. The first calcium rise corre-
sponds to intracellular Ca®*-release through IPsR, as demon-
strated by reduction of Ca®'-transients by the specific IP°R
inhibitor xestospongin. The secondary Ca”" increase was due
to Ca®"-influx through plasma membrane channels and was
dependant on an N-methyl-D-aspartate (NMDA) receptor, as
shown with specific antagonists [47,49]. Mitochondrial
Ca*"-overload was also observed after Tat application on
hippocampal cell cultures as measured with Rhod-2 dye [46].
The main consequence of Ca”*-alterations induced by Tat in
neurons and astrocytes is the induction of apoptosis [46].
Indeed, Tat is neurotoxic, mediates neuroexcitatory processes,
and finally promotes Caspases and oxidative stress-dependent
apoptosis [45,46]. Tat-induced apoptosis was demonstrated to
be dependent on cytosolic and mitochondrial calcium-levels
since it was abrogated by the intracellular calcium chelator
BAPTA-AM, and the inhibitor of mitochondrial calcium-
uptake ruthenium red [46].

Gpl120 is a structural protein, which forms a complex with
gp41, corresponding to HIV-1 surface spikes, proved to be
essential for viral entry into target cells. Thus, gp120 is a cell-
surface attachment glycoprotein, which binds mainly to CD4, a
member of the immunoglobulin superfamily, and thereby
determines the first steps of the infection [50]. Gp120 is like
Tat protein, neurotoxic and implicated in HAD [36]. Similarly
to Tat, gpl20 application was demonstrated to promote
intracellular Ca®*-rise in human fetal astrocytes and neurons,
by using Fura2-AM. The increases in [Ca2+]cyt observed in
neurons appear to be due to gpl20 activation of Ca*"-influx
implicating L-type calcium channels, Na'/H" exchanger and
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NMDA-type excitatory amino acid receptor, as demonstrated by
using selective blockers [51]. However, a proposed mechanism
for gp120-induced neuronal injury/death includes increases of
[Ca2+]cyt, interplaying with increased levels of extracellular
glutamate (that activate excitatory amino acid receptors), and
increased accumulation of reactive oxygen intermediates [52].
Gp120 is thought to participate in HIV-1 pathogenesis of HAD
through neurotoxic effect related to Caspase-dependent cell
death [53].

Finally, gp120-mediated increase of [Ca2+]Cyt was described
in human colonic adenocarcinoma cell line HT-29-D4 suggest-
ing its role in HIV-related enteropathy [54].

2.2. Human T-Lymphotropic Virus type-1

Human T-Lymphotropic Virus type-1 (HTLV-1) is the
etiologic agent of adult T-cell leukaemia/lymphoma (ATLL)
and of HTLV-1-associated myelopathy/tropical spastic parapar-
esis (HAM/TSP) [55]. Its 8.5 kb single-stranded RNA genome
encodes the retroviral genes gag, pol, pro and env. In addition,
several open reading frames located in the genomic 3’ (pX)
region encode regulatory proteins (Tax and Rex) and accessory
proteins (p12', p27', p13"™, p30™ and p21%) [56].

Two HTLV-1 proteins, p12" and p13", were demonstrated to
be implicated in Ca®"-signaling regulation.

HTLV-1 p12' is a small hydrophobic protein, which contains
four proline-rich SH3 domain binding motifs associated to
regulation of signal transduction. The protein associates with
the 16 kDa subunit of the vacuolar H"-ATPase, binds to IL-2
receptor 3 and vy chain and has been shown to enhance
papillomavirus E5 transforming ability (for a review see [56]).

Located to the membrane of ER and of cis-Golgi, p12" was
first demonstrated to associate with two ER Ca®'-binding
chaperones calreticulin and calnexin, suggesting a role of p12'
in Ca®"-mediated signals [57]. Ding et al. reported later that the
expression of p12" slightly increases basal cytosolic calcium, by
increasing both calcium-outflow from the ER, through IP;R,
and capacitative calcium entry. Acting on calcium-signaling,
pl12" enhances T lymphocytes activation, and thus proviral
DNA integration, through the activation of NFAT [58,59]. In
agreement with these data, inhibition of Ca®-dependent signals
by cyclosporin A (CsA), or BAPTA-AM, abolishes pl2'-
mediated activation of NFAT. Overexpression of calreticulin
was shown to block p12'-dependent activation by preventing
calcium-release from the ER and calcium entry through the
plasma membrane [59]. It has been reported that p12' could
modulate NFAT activation, through competitive binding to the
phosphatase calcineurin (which activates NFAT) [60].

p12'-dependent increase of [Caer]cyt has been shown to have
an impact on several Ca”" regulated proteins, including the
transcriptional co-activator, p300 [31,61] which can modulate
viral genes transcription from the HTLV-1 LTR [31].

p12" has been recently demonstrated to promote cell-to-cell
viral spread by inducing LFA1 clustering on T cells via a
calcium-dependent mechanism [62]. In fact, expression of p12'
in Jurkat T cells and mobilization of intracellular calcium by
thapsigargin (TG) both enhanced the expression of adhesion

molecule LFA-1, which was inhibited by BAPTA-AM, SKF
96365 (a calcium channel blocker), and calpeptin (an inhibitor
of the calcium-dependent protease calpain) [62].

Taken together, these data indicate that p12', by modifying
calcium-signaling, can promote viral replication, lymphocyte
proliferation and viral spread, thus playing a key role in viral
infection.

p13" corresponds to the 87 C-terminal amino acids of p30"
and is targeted to the inner mitochondrial membrane.
Accumulation of p13" in mitochondrial membrane disrupts
the mitochondrial network. Changes in mitochondrial mor-
phology, as swelling and fragmentation of the cristae, are
associated to loss of mitochondrial transmembrane potential
and leak of Ca®", thus increasing cell’s sensitivity to C,-
ceramide-induced apoptosis. Chemical properties of pl13"
suggest that its effect on mitochondrial permeability acts
through the formation of a channel giving rise to a rapid flux of
Ca”" across the inner membrane [63,64]. HeLa cells stably
expressing p13" exhibit a marked increase in Ca**-mediated
phosphorylation of the CREB transcription factor, suggesting
that p13" might also influence the cellular balance between
proliferation and apoptosis [65].

2.3. Hepatitis C virus

Hepatitis C virus (HCV), the major causative agent of non-A
non-B hepatitis in humans, is a member of the Flaviviridae
family, which contains a positive-stranded RNA virus of about
9.6 kb [66]. Despite the established association of HCV chronic
infection with development of liver cirrhosis and hepatocellular
carcinoma [67], the molecular mechanisms involved in this
process are still unknown. Several reports have shown that, in
addition to hepatocytes, HCV can infect T and B lymphocytes.

The HCv genome encodes a single polyprotein of more than
3000 residues which is cleaved by host and viral proteases
producing 3 structural proteins (core, E1 and E2) and 7
nonstructural proteins. The non-structural proteins orchestrate
viral replication forming a membrane-associated replication
complex. All the proteins are anchored to the ER membrane by
specific membrane segments: with the exception of E1 and E2,
which face the ER lumen, all the other HCV proteins are mainly
exposed to the cytosolic space [68]. Two HCV proteins have
been demonstrated to interact with calcium-signaling: the HCV
core protein and the non-structural protein NS5A.

HCV core has recently emerged as a candidate protein
implicated in liver oncogenesis [69]. It has been reported to
interfere with cell signaling by modulating mitogen-activated
protein kinase (MAPK) signaling, activating nuclear factor kB
(NFkB), interacting with signal transducer and activator of
transcription 3 (STAT3) and retinoic acid receptor (RXR) and
modifying the expression of cellular proto-oncogenes like c-myc
and tumor suppressor genes (p53, p21 and pRb) (for a review see
[70]). In cooperation with H-ras, HCV core has been reported to
transform both immortalized and primary rat fibroblasts [71].
Furthermore, in vivo studies have demonstrated that transgenic
mice for HCV core [72] or the full-length HCV genome [73]
develop HCC. The role of HCV core in the control of cell death
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is thought to be potentially involved in its oncogenic activity. In
fact, HCV core has been reported to induce or inhibit cell death,
upon cell sensitization with anti-Fas antibody, tumor necrosis
factor-a (TNFa) or serum starvation (reviewed in [74]) and to
determine aggregation of Fas receptors, in lymphoid cells,
directly leading to apoptosis [75]. Furthermore, recent reports
have shown that in vitro expression of HCV core may directly
induce apoptosis in 20—50% of transfected cells [76,77].

According to previous studies, full-length HCV core mainly
localizes to the cytosolic side of the ER membrane [78],
although HCV core has also been shown to colocalize with lipid
droplets [79], mitochondria [72,80], and the intermediate Golgi
compartment [81], while C-terminally truncated core localizes
to the nucleus [72,82]. HCV core processing and maturation
occur in the ER and is strictly dependent on interaction with the
ER membrane [78].

HCYV core protein has been shown to interfere with calcium-
signaling in T cells, where it activates T cell responses [83] and
in liver derived cells, where it can induce apoptotic cell death
[77].

Bergqvist et al. demonstrated that the expression of HCV core
correlates with increased levels of cytosolic Ca®" and sponta-
neous Ca”" oscillations in transfected Jurkat T cells [83].
Expression of the HCV core protein was shown to activate 1L-2
promoter through activation of NFAT [84]. HCV core was
shown to accelerate emptying of intracellular calcium stores,
inducing Ca”" entry via CRAC channels and favouring high
frequency of cytosolic calcium oscillations which specifically
activate NFAT [83]. The effect of HCV core on calcium
mobilization was not dependent on phospholipase C-y1 (PLC-
v1) activity or increased IP* production and did not require
functional IP3R, leading to hypothesize that insertion of the viral
protein in the ER membrane may be sufficient to promote
calcium-leakage from the ER. Interestingly, treatment of cells
with CsA and depletion of extracellular calcium by EGTA were
shown to block NFAT activation confirming a role of calcium
mobilization in the activation of T cells upon HCV infection
[85].

A decrease in the [Ca”']., induced by transient and stable
expression of HCV core protein in liver-derived cells was
reported by our team using recombinant aequorin calcium
probes. HCV core was shown to trigger ER stress unfolded
protein response, as demonstrated by the induction of Grp78/
BiP, Grp94, calreticulin and SERCA?2 expression. ER calcium-
depletion and ER stress were shown to induce apoptosis in this
model through overexpression of the CHOP/GADDI153
proapoptotic factor, Bax translocation to the mitochondria,
mitochondrial membrane depolarization, cytochrome ¢ release,
Caspase-3 and PARP cleavage. Reversion of HCV core-induced
ER calcium depletion (by transfection of SERCA2) completely
abolished mitochondrial membrane depolarization, suggesting
that calcium-signaling plays a major role in the HCV core-
mediated control of apoptosis. ER stress and apoptosis were
also found in a proportion of HCV full-length replicon-
expressing cells and in the liver of HCV core transgenic mice.
HCYV core-induced ER calcium-depletion was shown to follow
ER stress and to be related to the impaired function of SERCA

pump, possibly due to the HCV core-induced overexpression of
calreticulin which has been shown to bind and inhibit SERCA
proteins [77,86].

No modification of cytosolic Ca®"-signal was noted upon
core expression. This finding could be explained by an increase
of Ca®" in the ER-mitochondria microdomains, a process
potentially implicated in mitochondrial membrane depolariza-
tion and apoptosis [77,87].

Overall, these data show that HCV core determines ER
calcium-depletion by inducing ER calcium-leakage (T lympho-
cytes) and/or ER stress (liver cells), thus leading to T cell
activation or modulation of apoptotic death control in epithelial
cells. This last effect could be related to mechanisms involved in
HCV-induced chronic liver disease and transformation.

NSS5A is a serine phosphoprotein, which is localized to the
ER membrane [88—90]. NS5A has been shown to interact with
double-stranded RNA-dependent kinase (PKR) and inactivate
its function, thus modulating the interferon-stimulated antiviral
response [91]. NS5A has been shown to function as a
transcriptional trans-activator [92,93]. Interaction of NS5A
protein with calcium-signaling has been suggested by using
“calcium” drugs. In fact, calcium chelating drugs as well as
antioxidant reagents were shown to reduce NS5A’s ability to
activate transcription factors like NF«B and STAT3 [94].
Another calcium-dependent pathway for NSS5A-dependent
NFkB activation was demonstrated by Waris et al. [95]. This
involves NS5A-dependent activation of the calcium-dependent
calpain protease which mediates degradation of NF«B inhibi-
tory subunit [kBa [95]. Calpain was also implicated in the
cleavage of NS5A [96]. A hypothetic model for the impact of
NS5A-induced elevation of cytosolic calcium on signal
transduction activation is the following: NS5A could induce
ER stress leading to the efflux of calcium from the ER. Calcium
release from the ER enhances cytosolic calcium-concentration
thus activating calcium dependent proteases such as calpain
which in turn cleaves IkBa and NS5A. The calcium released
from the ER is taken up by the mitochondria. Elevated [Ca®" ],
directly affects transmembrane potential and increases mito-
chondrial ROS production, leading to the activation of
transcription factors, STAT3 and NFkB [94].

The HCV polypeptide p7, located in the ER membrane was
also proposed to form an ion channel in cellular membranes
potentially responsible for calcium-flow from the ER [97].

2.4. Enteroviruses

Enteroviruses (e.g. polioviruses, coxsackieviruses, echo-
viruses, etc.) are a family of nonenveloped, cytolytic viruses
containing a 7.5 kb single-stranded RNA genome that encodes
four capsid proteins (VP1 to VP4) and ten non-structural
proteins (including seven mature proteins (2AP™, 2B, 2C, 3A,
3B, 3CP™, and 3DP*') and three stable cleavage intermediates
with distinct functions from their cleavage products (2BC, 3AB,
3CDP™). After cell entry and virion uncoating, the RNA
molecule acts as an mRNA directing the synthesis of a single
polyprotein, which is subsequently processed by virus-encoded
proteases to produce the structural capsid proteins and the non-
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structural proteins [98]. Replication of the viral RNA takes
place in replication complexes at the outer surface of virus-
induced membranous vesicles that proliferate and accumulate in
the cytoplasm of infected cells [99,100]. Non-structural proteins
induce alterations in host-cell functions (inhibition of transcrip-
tion, disturbance of nucleo-cytoplasmic trafficking, inhibition
and re-modeling of the vesicular transport system) which serve
to create the proper conditions for efficient viral multiplication
by increasing availability of cellular components used by the
virus and/or by evading anti-viral host cell responses [101].

The non-structural protein 2B has been shown to modify
calcium-signaling. It is a small (97-99 aa) membrane-integral
replication protein [102] localized at the surface of the ER- and
Golgi-derived membrane vesicles at which viral replication
takes place. This protein contains an hydrophobic region which
is a cationic amphipathic alpha-helix [103] that can form, by
homomultimerization, membrane-integral pores [101,104]. It
has been shown that infection of HeLa cells with coxsackievirus
results in a reduction of the amount of calcium that can be
released from the intracellular stores, associated to a parallel
increase in the [Caz+]cyt due to the influx of extracellular calcium
[105]. More recent studies have demonstrated, using organelle-
targeted aequorin calcium probes, that 2B reduces [Ca*"]., and
[Ca2+]Golgi in HeLa cells [106] without affecting the refilling
activity of the SERCA [107]. This leads to a decrease of the
amount of calcium that can be released from the stores and of the
stimulus-induced rise of [Ca®*],. These data also confirm that
the influx of Ca*" from the extracellular medium is increased,
leading to larger cytosolic calcium responses.

The main consequences of cell Ca**-alterations induced by
the 2B proteins are:

(1) Impact on viral replication. Infected cells contain both the
2B protein and the 2BC stable precursor, which is
responsible for the accumulation of the membrane
vesicles at which viral RNA replication takes place
[108]. The 2B and 2BC proteins could contribute to the
cytoplasmic accumulation of transport vesicles through
the reduced Golgi and ER lumenal [Ca®']. It has been
shown that mutation of protein 2B causes defects in viral
RNA replication [103]. This result has suggested that
there is a close correlation between the ability of 2B to
alter membrane permeability and to support viral
replication [109].

(2) Impact on inhibition of apoptotic host cell response to
viral infection. Actually, enterovirus infection leads to the
development of the so-called cytopathic effect (CPE), a
necrosis-like type of cell death which is the result of a
complex interplay between apoptosis-inducing and apop-
tosis-suppressing functions encoded by the enterovirus
genome [110]. Early in infection, the cell apoptotic
response is triggered [111]. However, with the onset of
viral replication (i.e. about 2 h postinfection), the
apoptotic program is abruptly interrupted [106,110]. In
fact, at later stages, after development of CPE, some signs
of apoptosis are detected [112]. It has been shown that
mutants of 2B that were defective in modifying the

intracellular Ca®"-fluxes failed to protect cells against
apoptosis [106]. The 2B protein, by forming channels in
the ER membrane, leads to a decreased [Ca*'],,, and to a
decreased calcium flow between stores and mitochondria,
mimicking a calcium-mediated mechanism of apoptosis
suppression described for Bel-2 [113]. The expression of
2B has been shown to suppress apoptotic cell death
induced by C*-ceramide (which reduces [Ca®"].,), but not
by etoposide (which acts directly on mitochondria by
causing membrane translocation of Bax [114]), suggest-
ing that it specifically targets a Ca’’-sensitive, ER-
dependent apoptotic pathway [106]. Thus, it seems that
the antiapoptotic activity of 2B protein most likely serves
to delay apoptotic responses, providing the virus the time
required for genome replication, rather than completely
prevent all signs of apoptosis.

(3) Potential impact of 2B-induced inhibition of cell
secretory pathway (mediated by the decrease in [Ca®'].,
and [Ca2+]Golgi) leading to down regulate innate immune
responses (secretion of cytokines) as well as adaptive
immune responses (exposure of peptide-loaded MHC-I
molecules) and to interfere with recycling of death
receptors (e.g. tumor necrosis factor receptor) to the cell
surface [107].

To summarize, the enterovirus 2B protein forms pores in
ER and Golgi membranes leading to a decrease in [Ca”"]., and
[Ca2+]Golgi and in calcium-fluxes to mitochondria, thus
disturbing intracellular calcium-homeostasis. This activity
contributes to create conditions required for replication of
the viral RNA genome, to suppress apoptotic host-cell
responses which limit viral multiplication and, hypothetically,
to evade anti-viral immune response.

2.5. Rotavirus

Rotaviruses, members of Reoviridae family, are recognized
as the most important cause of viral gastroenteritis in young
children and animals. Rotaviruses are nonenvelopped viruses.
Their double-stranded RNA genome (18 to 30 kb), encoding for
six structural and five non-structural proteins, is contained
within an icosahedral capsid organized in three concentric
layers. The internal layer is formed by VP2, the intermediate
layer is formed by VP6 and the outer shell consists of
glycoproteins VP7 and VP4 organized in dimers to form 60
spikes [115].

The DLP (Double-shelled particles: core plus VP6) sub-viral
particles are assembled in viroplasms, electron dense cytoplas-
mic structures consisting of an accumulation of viral proteins
and nucleic acids. It has been well established that the DLP
binds to the ER to bud into this compartment. The viral non-
structural protein NSP4 acts as a receptor for the DLP. During
the budding process, the virus acquires a transitory membrane
envelope containing NSP4 and VP7, which are ER membrane-
associated proteins, and VP4. Then, the particle matures by a
selective retention of the external capsid proteins VP4 and VP7
and the elimination of NSP4 and the membrane lipids [115].
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This process has been shown to be strictly calcium-dependent
[116,117]. In fact, in the absence of Ca?", VP7 did not assemble
onto virus particles and remained in the cytoplasm outside the
ER [118]. ER calcium-depletion impaired the N-glycosylation
of VP7 and NSP4 [116,117].

It has been shown that rotavirus infection induces a
progressive increase in Ca®" plasma membrane permeability,
through activation of an L-type calcium channel, which leads to
an elevation of cytosolic and store Ca®*-concentration [116,
119,120].

Several studies indicate that calcium is a critical factor in
rotavirus cytopathology (necrosis or oncosis). The cytosolic
calcium rise induced by rotavirus infection has been shown to
lead to cell death in enterocytes, fetal monkey kidney cells
(MA104) [121] and human colon-cancer derived (Caco-2) cells
[122]. In fact rotavirus-dependent cell death was reduced by
decreasing extracellular Ca”"-concentration, by cell treatment
with the BAPTA-AM, and by adding the Ca®" channel inhibitor
verapamil [119,121].

The nonstructural rotavirus protein NSP4 has been shown to
act as an enterotoxin [123]. In fact, NSP4 is the first
characterized viral enterotoxin. Exogenously added NSP4
induces diarrhea in rodent pups and stimulates secretory
chloride currents across intestinal segments. This disease
response was specific, age and dose-dependent [123].

The enterotoxin effect of NSP4 is related to modification of
calcium-signaling. Indeed, NSP4 has been shown to induce an
increase of [Ca2+]Cyt in Sf9 insect cells, in human intestinal
HT-29 cells [124,125] and in HEK 293 cell line [126].
Elevation of [Caz+]Cyt was show to be due to ER calcium
depletion and dependent on PLC activation and IP? production
[124,125].

3. DNA viruses
3.1. Hepatitis B virus

With an estimated 350 million individuals chronically
infected worldwide and approximately one million deaths
annually, Hepatitis B virus (HBV) is regarded as one of the most
fatal human pathogens. Chronically infected people are at risk
for developing severe liver cirrhosis that may eventually
progress to hepatocellular carcinoma.

HBV is a 3.2 kb partially double-stranded circular DNA virus
that undergoes reverse transcription during its replication cycle
[127]. The genome includes four open reading frames encoding
two structural proteins, the viral envelope and the core, and two
non-structural proteins, the reverse transcriptase-polymerase
and the X protein.

The hepatitis B X protein (HBx) is a multifunctional protein
which has been shown to modify calcium-signaling. HBx is
mainly located to the cytoplasm, where it has been shown to
target mitochondria [128] and colocalize with VDAC 3 [129].
However, it can also be detectable in the nucleus [130]. HBx
exhibits pleiotropic effects that modulate cell responses to
genotoxic stress, protein degradation and activation of signaling
pathways (for review, see [131]).

HBx transactivates a number of cellular promoters and
enhancers containing binding sites for NF«B, activator protein-1
(AP-1), activator protein-2 (AP-2), c-EBP, activating trans-
cription factor/c-AMP-responsive element binding protein
(CREB), RNA polymerase and NFAT, cellular promoter of
genes associated with cell proliferation such as IL-8, TNF,
transforming growth factor-p (TGF-B) and early growth
response factor and cytosolic signal transduction pathways
such as Ras/Raf mitogen-activated protein kinase, Src kinases,
c-jun N-terminal kinase and Jak1/STAT [131-133]. Overall,
HBx has been shown to play a major role in HBV DNA
replication and in HBV-related liver cell transformation [134].

Depending on the cell type and experimental procedure,
HBx has been reported either to inhibit [135] or promote
[136,137] cell death. Actually, an integrated view of the role of
HBx on apoptosis has been proposed. In this model, high levels
of HBx, which are present during the acute phase of HBV
infection, cause cell cycle block and apoptosis, whereas low
HBx levels, such as those observed in chronically infected
humans, would allow cell liver proliferation [138].

Impact of HBV on calcium-signaling was mostly demon-
strated through the action of HBx protein. The main effect
reported is the elevation of [Ca2+]cyt as demonstrated by using
recombinant aequorin probes and Fura2-AM dye [139,140].

The consequences of the HBx-mediated modifications of
Ca”'-signaling are:

(1) Viral replication. Several studies have shown that the
impact of HBx on HBV replication is dependent on the
HBx-induced modification of [Ca2+]Cyt [140—-145]. HBx
has been shown, in HepG2 cells, to activate cytoplasmic
kinases, proline-rich tyrosine kinase 2 (Pyk2) and focal
adhesion kinase (FAK), involved in HBV reverse
transcription and DNA replication, in a calcium-depen-
dent manner [141,142,146]. The calcium-dependent
action of HBx on HBV DNA replication relies to three
lines of evidence: (i) Activation of Pyk2 and FAK are
mediated by increased levels of [Ca2+]cyt. Chelation of
cytosolic calcium with BAPTA-AM blocked HBx-
dependent activation of Pyk2 and FAK and in turn
HBV DNA replication [141,146]. (ii) Inhibition of
mitochondrial channels with CGP37157 or CsA blocked
HBx activation of HBV DNA replication [141] (iii)
Drugs which increase the level of cytoplasmic calcium
functionally replace HBx in stimulating viral DNA
replication [141,142]. Xia et al. found that both HBV
replication and Pyk2 phosphorylation can be inhibited
also by blocking ER Ca®"-ATPase or IP;R, but not RyR,
concluding that ER could play an important role in the
HBx-mediated HBV replication. Interestingly, a stronger
inhibitory effect was observed by blocking mitochondrial
PTP and ER Ca”’-ATPase or ER IP;R [144] (Fig. 3).

(2) Core assembly. It has been shown that increased [Ca2+]cyt,
mediated by HBx protein, induced HBV core assembly
[143]. Treatment by BAPTA-AM and CsA reduced HBV
capsids and treatment by TG increased HBV capsids in
transfected HepG2 cells [143].
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Fig. 3. Schematic model illustrating the effect of HBx on Ca®"-signaling and its possible significance for HBx-induced apoptosis, signal transduction activation and
viral DNA replication. Through its mitochondrial localization, HBx has been shown to interact with voltage dependent anion channel. This may lead to opening of the
permeability transient pore (PTP) and release of calcium from mitochondria thus increasing cytosolic calcium-concentration ([Ca2+]cyt) [139,140]. This activates Pyk2/
FAk family kinases [141,142,146], which in turn increase viral replication. ER Ca®" mobilization has also been implicated in virus DNA replication [144]. HBx-
mediated elevation of [Ca”]Cyt also induces the activation of both JNK and MAPK signal transduction pathways leading to the activation of cellular genes expression
(e.g. through activator protein-1 (AP-1)) (pathways shown in green) [140]. PTP also determines the release of cytochrome ¢ (cyt ¢) thus activating Caspase 3 (Casp 3).
Caps 3-dependent cleavage of PMCA enhances [Ca2+]cyt, leading to mitochondrial Ca**-overload, mitochondrial structure alteration and further release of Caspase
cofactors. This process allows the final commitment of cell death (pathway shown in red) [139].

(3) Intracellular signal transduction pathways. Elevation of
[Ca2+]cyt has been demonstrated to play a key role in the
HBx-mediated gene transactivation which involves
calcium-dependent transcription factors (e.g. NFAT
[147]) and calcium-dependent signaling pathways (e.g.
JNK and Ras/MAPK/AP-1 [140]). The Pyk-2/FAK
kinases family, which is also activated by cytosolic
Ca”®" elevations, activates Src [148] and Jun [149]
kinases leading thus to the regulation of cellular signal
transduction cascades, cell proliferation, apoptosis, and
cell migration (Fig. 3).

(4) Impact on cell death. HBx has been shown to modulate
apoptotic cell death and, in specific cellular models, to
have a pro-apoptotic effect [134]. Data obtained by
using recombinant aequorin calcium probes have

of HBx in liver tumor-derived HepG2 cells and in cervix
tumor-derived HeLa cells enhanced agonist-evoked
cytosolic Ca*‘-signals. The HBx protein, which is
located at the pore of the mitochondria, was shown to
induce the release of cytochrome ¢, which activates the
Caspase 3. Caspase 3, in turn, cleaves the PMCA,
decreasing its activity and determining the elevation of
[Ca2+]Cyt in the space beneath the plasma membrane.
These calcium-signaling modifications were shown to be
associated with mitochondrial Ca®"-overload leading, in
our model, to alterations of mitochondrial structure
(swelling and permeabilization), followed by reduction
of mitochondrial calcium accumulation and cell apop-
tosis [139] (Fig. 3).

revealed that HBx-induced Ca”‘-signaling alterations Overall, the studies focused on HBx and calcium-signaling
determine an important potentiation loop in the HBx- support the following model: HBx localizes to the mitochon-
induced pro-apoptotic effect [139]. To the molecular dria [129] (where it can alter mitochondrial function and
mechanisms, our team demonstrated that overexpression  physiology [150]): it activates PTP opening and releasing of
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mitochondrial calcium to the cytoplasm. Possibly, calcium
could also transiently accumulate into the ER through Ca®'-
ATPase, and be released through the IP°R. According to the
induced level of calcium elevation in the cytosol, HBx could
activate HBV DNA replication and/or modify intracellular
signaling pathways leading to cell proliferation or apoptosis. If
the level of released calcium in the cytosol is elevated and/or
Caspase 3 activation further increases the cytosolic calcium
elevation through PMCA cleavage, calcium accumulates in
mitochondria, causing mitochondria matrix calcium over-
loading, PTP opening, further calcium release to cytoplasm
and eventually apoptotic cell death.

3.2. Human Herpesvirus type-8

Human Herpesvirus type-8 (HHV-8), also designated as
Kaposi’s sarcoma-associated Herpesvirus (KSHV), targets
mainly circulating B cells and endothelial cells and is associated
with the development of Kaposi’s sarcoma, primary effusion
lymphoma , and a subset Castleman’s disease. HHV-8 genome
consists of a double-stranded long unique DNA molecule of
approximately 140.5 kb flanked by high-G+C terminal repeat
units [151]. The proteins and genes associated with latent
infection, clustered at a latency locus within the HHV-8
genome, include Latency Associated Nuclear Antigen-1
(LANA1), viral cyclin (v-Cyclin), and viral Fas-associated
death domain-like interleukin 1p3-converting enzyme inhibitory
protein (v-FLIP). HHV-8 genome displays also a number of
genes associated to lytic HHV-8 infection that may be involved
in tumour growth, as the viral G-protein-coupled receptor (v-
GPCR), a viral bcl-2 homologue, regulatory proteins K1 and K7
and chemokine-like proteins called viral Macrophage Inflam-
matory Proteins (v-MIP) [152]. Several HHV-8 proteins were
demonstrated to mediate intracellular calcium alterations or to
promote calcium-dependent processes: K15, v-GPCR, K1, K7,
VMIP I and II and v-Bcl2.

Reports of alteration of calcium-signaling mainly concerns
HHV-8 proteins expressed during the lytic phase of the
infection. Indeed, HHV-8 reactivation, as demonstrated by
expression of lytic viral accessory protein PF-8 or the late-lytic
viral envelope glycoprotein gpK8.1, was proved to occur upon
mobilization of intracellular Ca®" induced by ionomycin or
thapsigargin and to act through activation of calcineurin [153].

The K15 protein, expressed during latency in infected
tumors, significantly inhibits B-cell Receptor (BCR)-mediated
calcium mobilization measured by Indo-1 loading [154].

HHV-8 protein v-GPCR is a constitutively active homo-
logous of IL-8 receptor in the plasma membrane. Transient
transfection of v-GPCR in COS cells induces agonist-
independent accumulation of IP; and activation of gene
transcription through the PKC-responsive promoter [155].
Interestingly, this protein was found to have a pro-oncogenic
function and to promote angiogenesis in vitro and in vivo [156].
The presence of a constitutively active GPCR in the viral
genome suggests that its pathogenic role could be related to a
permanently activated signaling leading to altered cell growth
and neoplastic transformation.

The K1 protein is a lymphocyte B cell receptor-like protein
involved in signal transduction through plasma membrane
which can down regulate BCR expression [157]. K1 deter-
mines, through a phosphorylation cascade of downstream
elements, a prolonged increase of intracellular [Ca®"], shown
by using Indo-1, and activation of NFAT leading to expression
of inflammatory cytokines and growth factors, virus dissemina-
tion and virus-associated angiogenic proliferation [158].

K7 is located to the mitochondria, where it acts as an anti-
apoptotic protein by preventing the loss of Ays,,. K7 was
shown, by using Indo-1, to induce calcium mobilization in the
cytoplasm of transiently transfected BJAB cells [159]. Two-
hybrid screening analyses have shown a specific interaction of
K7 with a T cell modulator of Ca®'-signaling (Calcium-
Modulating Cyclophilin Ligand (CAML)) [159,160]. Since
CAML is present mainly in the ER and K7 in the mitochondria
[159], their interaction may take place in contact sites between
the ER and mitochondria [161]. The interaction between K7 and
CAML is thought to increase cytosolic Ca**-concentration
through ER Ca”*-release and activation of the CCE [159].

HHV-8 encoded v-MIP I and II cytoplasmic chemokines
have been shown, by using Indo-1, to mobilize calcium through
chemokine Receptor 5/8 [162,163] suggesting that they may
play important roles in the propagation of Kaposi sarcoma and
others HHV8-related diseases.

HHYV-8 genome encodes a Bcl-2 homologous protein (even if
some structural differences were described). v-Bcel2 could exert
its antiapoptotic effect by reducing ER and cellular Ca**-content,
like Bcl-2 [164,165]. Indeed, even if the v-Bcl2 effect on cellular
Ca*'-homeostasis has not been studied yet, the viral protein has
been shown to promote survival of infected cells thus
contributing to the development of Kaposi sarcoma [151].

Thus, HHV-8 encodes Ca”’-regulating proteins which
mediate apoptosis inhibition and cell proliferation playing a
relevant role in the process of tumorigenesis.

3.3. Human Herpes Simplex viruses

(HSV-1 and HSV-2) are members of the herpes virus family
and are known to cause human diseases. Cheshenko et al. [166]
demonstrated that exposure of Vero (monkey kidney epithelial)
and Caski (human cervical epithelial) cells to Herpes Simplex
viruses type-1 and 2 (HSV-1 and HSV-2) results in a rapid and
transient increase in [Ca%]cyt as determined by using Fura2-
AM [166]. Pretreatment of cells with pharmacological agents
that block release of IP3-sensitive ER stores abrogates the
response. Moreover, release of calcium from IP3-sensitive
stores, but not influx of Ca*" across the plasma membrane, is
important for HSV infection [166]. HSV-1 and HSV-2 entry is
associated with tyrosine phosphorylation of cellular proteins
[167]. In this setting, authors reported that FAK phosphoryla-
tion in HSV-infected cells is dependent on cytosolic calcium
increase [166]. Phosphorylation of FAK promotes reorganiza-
tion of the actin cytoskeleton, a process that may be important in
nuclear trafficking of internalized virus.

Activation of the transcription factor NFkB in HSV infected
macrophages, which participates in proinflammatory response,
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was also demonstrated to be mediated by calcium-signaling
because specific inhibition of mitochondrial calcium channels
prevented NFkB activation [168]. It has also been reported that
elevated intracellular [Ca*'] is implicated in cell death and the
spread of HSV from infected cells. Indeed, ionomycin was
found to increase the release of HSV-1 from epidermoid
carcinoma A431 infected cells. The enhanced Ca®*-dependent
cell death could promote the virus release which in turn could
contribute to the spread of HSV-1 infection [169].

3.4. Epstein—Barr virus

Epstein—Barr virus (EBV) is involved in proliferation of
lymphoid and epithelial cells leading to benign and malignant
diseases. It has been etiologically linked with infectious
mononucleosis and cancers such as Burkitt’s lymphoma,
Hodgkin’s disease, nasopharyngeal carcinoma or gastric cancer
(reviewed in [170]). EBV-related tumors are characterized by
the presence of multiple extrachromosomal copies of the viral
genome. Expression of EBV latent genes, mainly EBV Nuclear
Antigen proteins (EBNA) and Latent Membrane Protein
(LMP), also appears to contribute to the viral oncogenic role
[171]. The EBV genome is composed of a linear double-
stranded DNA, approximately 172 kb in length. Activation of
the viral lytic phase results in the expression of two viral
transcriptional activators, BZLF1 and BRLF1 and subsequent
expression of early and late-activation proteins, such as an
IL-10 homologue and a Bcl-2 homologue [170,172].

Early stages of EBV infection, as cell entry and activation of
B cells are calcium-dependent. It has been shown that EBV
infection of B cells is associated with an increase of intracellular
[Ca®"], which can be blocked by a L-type Ca®" channel blocker,
verapamil. Verapamil prevented internalization of the virus,
polyclonal B cell activation and subsequent transformation
[173]. EBV activation of lymphocyte proliferation displays
similarities with Ig-induced B cell activation, and favours EBV
integration into the host cell genome.

LMP2A and EBNAI are expressed during latency in long-
term virus carriers. [174]. LMP2A acts as a negative regulator
on calcium-signaling. Indeed, it has been demonstrated to
constitutively aggregate in the plasma membrane mimicking
cross-linked BCRs. LMP2A competitively binds cellular
phospho-tyrosine kinases (PTKs) thus preventing calcium
mobilization upon BCR stimulation [175-177].

As for HHV-8, EBV-induced mobilization of calcium and
activation of calcium-related pathways takes place mainly
during the lytic phase of the infection. Induction of EBV lytic
cycle in EBV-positive Burkitt’s lymphoma cells has been
achieved by increasing cytosolic calcium through ionophore,
phorbol esters or anti-immunoglobulin, and inhibited by CsA,
indicating that calcineurin contributes to the lytic process
[178,179].

EBV oncoprotein LMP1 was shown to participate in
calcium-dependent reactivation of EBV, inducing a Ca®"/
calmodulin dependent protein kinase type IV/Gr (CaMKIV/
Gr) [172,180]. CaMKIV/Gr is highly expressed in T lympho-
cytes and determines Ca”*-dependent protein phosphorylation

and gene transcription following TCR signaling [181]. Inter-
estingly, transcription of the viral transcriptional activators of
the lytic phase is dependent on calcium-responsive sites on the
promoters, suggesting a possible involvement of CaMKIV/Gr
in calcium-related transcriptional processes. These MEF2 sites
are also NFAT-dependent suggesting a synergy between
CaMKIV/Gr and calcineurin in latent EBV reactivation [182].
The SERCA inhibitor, curcumin [183], which also inhibits PKC
and AP-1 transcription factor, was demonstrated to inhibit
transcription and thus prevent EBV reactivation, suggesting a
major role of ER calcium-content on EBV switch from latency
to replication [184].

4. Interaction of other RNA and DNA viruses with
calcium-signaling

Rabies virus infection induces the furious and paralytic form
of fetal nervous disorders in humans and a variety of animals.
Viral infection preferentially takes place in the brain and spinal
cord. It is believed that the pathogenesis of rabies disease is due
to functional impairment of virus-infected neurons (reviewed in
[185]). Recent findings demonstrated that rabies infection
caused loss of the calcium-binding protein calbindin-D28k-
immunostaining in the cortical supragranular layers as well as in
the striatum of mice infected brains [186]. Calbindin-D-28k
regulates the effects of Ca**-ions on intracellular metabolism
[187]. Loss of calbindin-D-28k in the brains of infected mice
can disturb Ca®" homeostasis and GABAergic neurotransmis-
sion. m-Calpain, another calcium regulated protein was also
shown to be upregulated during rabies infection [188].

Influenza viruses infect the respiratory tract (nose, throat,
and lungs) in humans. A reduced voltage-dependent Ca®'-
current was reported in the neurotropic strain of Influenza A
virus infected cells [189] and the upregulation of a novel EF-
hand calcium-binding protein, Ibal, was also reported in the
central nervous system of infected mice [190]. Neutrophil
deactivation related to influenza infection seems to be mediated
by a deregulation of calcium responses. In vitro exposure of
human neutrophil to influenza virus was reported to increase the
generation of IP? and determine a rise in intracellular [Ca®"] and
efflux of Ca®" from the cell. These data lead to postulate that
partial activation of neutrophils by influenza virus leads to
impaired availability of intracellular Ca®" stores when subse-
quent stimuli are applied and offers a biochemical basis for
functional deactivation [191].

Human papillomaviruses (HPV) may cause benign epithelial
lesions. High-risk genotypes of HPVs, such as HPV-16 or
HPV-18 have been recognized as causative agents of high-grade
dysplasia, and invasive ano-genital cancer (cervical cancer).
Papillomaviruses infect keratinocytes and replicate into their
nucleus in a differentiation-dependent manner [192]. Calcium-
signaling provides a central control mechanism for growth,
differentiation and apoptosis of epidermal keratinocytes, as
shown by induction of calcium transients in both dividing and
terminally differentiating keratinocytes [193,194].

However, Garrett et al. have suggested that an increase in the
concentration of intracellular calcium could also be associated
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with progression of HPV-18 immortalized keratinocytes to
tumorigenicity [195].

HPV E6 oncoprotein was demonstrated to interact, in HeLa
cells, with a Ca®*-binding protein, called E6BP [196], identical
to ERC-55 belonging to a new subfamily of the EF-hand
superfamily of Ca®*-binding proteins specifically located to the
ER [197]. HPV E7 oncoprotein has been shown, in MCF-7
mammary adenocarcinoma cell line, to down-regulate S100P
[198], which belongs to the S100 super-family of Ca®*-binding
proteins [199-201]. In addition, HPV E7, which induces
S-phase entry, is inhibited by S100A8/A9 protein complex. This
mechanism could have an important role in modulation of E7
oncogenic activity [202].

Polyomavirus: The human neurotropic JC virus (JCV) and
the human BK virus (BKV) in addition to the simian virus 40
(SV40) are members of the Polyomavirus family. Upon
reactivation because of immunosuppression, JCV induces the
once rare demyelinating disease progressive multifocal leu-
koencephalopathy most frequently seen in AIDS patients, while
BKYV induces polyomavirus nephropathy, an increasing com-
mon side effect of immunosuppressive therapy in renal
transplants recipients.

The virion of polyomavirus is composed of three structural
proteins: VP1, VP2 and VP3, as well as a viral minichromosome
[203]. VP1 is the major structural protein of the capsid shell
protein. The presence of the divalent cation calcium in murine
polyomavirus virions was first shown by X-ray fluorometry
studies [204] and a structural role for calcium was demonstrated
by Brady et al. [204,205] showing that calcium chelation by
EGTA (in conjunction with disulfide bond disruption by
dithiothreitol), results in the breakdown of the virion into its
capsomere subunits and a DNA—protein complex. Interestingly,
addition of exogenous CaCl® to this dissociated mixture
permitted reassembly into intact virions which partially regained
both infectivity and hemagglutination activity [206—208].
Different studies demonstrated that VP1 protein has calcium-
binding capabilities through an amino acid sequence that make
up the calcium-binding EF hand structure [209]. Furthermore,
recent studies have shown that calcium-binding to VP1 of
simian virus 40 is important for virion assembly and for viral
cell entry and nuclear entry of the viral genome [209].

Interaction of other viruses such as rhinovirus, mumps virus,
HHV-7, cytomegalovirus and adenovirus with calcium-signal-
ing was also reported, however the real impact of this
interaction on viral infection and cellular cytopathy remain
until today not very well documented.

5. Concluding remarks

This literature analysis highlights recurrent viral strategies
targeting calcium-signaling modulation to promote viral infec-
tion, cell response to the virus, and escape to the immune
response. Calcium dyes and probes allow to define calcium-
signaling alterations at the subcellular level helping in under-
standing the molecular mechanisms responsible for cellular
functions perturbations. “Calcium” drugs have been used to
explore the cytobiological effects of calcium-signaling dereg-

ulations and to block viral-induced effects. These studies will
stimulate further analyses paving the way to new therapeutical
approaches of viral-related diseases.
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